123 research outputs found

    Comparison of beam generation techniques using a phase only spatial light modulator

    Get PDF
    Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation

    Laser cooling with a single laser beam and a planar diffractor

    Full text link
    A planar triplet of diffraction gratings is used to transform a single laser beam into a four-beam tetrahedral magneto-optical trap. This `flat' pyramid diffractor geometry is ideal for future microfabrication. We demonstrate the technique by trapping and subsequently sub-Doppler cooling 87Rb atoms to 30microKelvin.Comment: 3 pages, 4 figure

    Practical Doppler broadening thermometry

    Full text link
    We report initial research to develop a compact and practical primary thermometer based on Doppler broadening thermometry (DBT). The DBT sensor uses an intrinsic property of thermalized atoms, namely, the Doppler width of a spectral line characteristic of the atoms being probed. The DBT sensor, being founded on a primary thermometry approach, requires no calibration or reference, and so in principle could achieve reliable long-term in-situ thermodynamic temperature measurement. Here we describe our approach and report on initial proof-of-concept investigations with alkali metal vapour cells. Our focus is to develop long-term stable thermometers based on DBT that can be used to reliably measure temperatures for long periods and in environments where sensor retrieval for re-calibration is impractical such as in nuclear waste storage facilities.Comment: 7 pages, 4 figures, referees' comments incorporate

    Comparison of beam generation techniques using a phase only spatial light modulator

    Get PDF
    Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation

    Cavity-enhanced frequency up-conversion in rubidium vapour

    Get PDF
    We report the first use of a ring cavity to both enhance the output power and dramatically narrow the linewidth (<1MHz) of blue light generated by four wave mixing in a rubidium vapour cell. We find that the high output power available in our cavity-free system leads to power broadening of the generated blue light linewidth. Our ring cavity removes this limitation, allowing high output power and narrow linewidth to be achieved concurrently. As the cavity blue light is widely tunable over the 85Rb 5S1/2F=3 → 6P3/2 transition, this narrow linewidth light would be suitable for second-stage laser cooling, which could be valuable for efficient 85Rb BEC production

    Single-laser, one beam, tetrahedral magneto-optical trap

    Get PDF
    We have realised a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.Comment: 8 pages, 6 figures, 2 movie

    Holographically controlled three-dimensional atomic population patterns

    Get PDF
    The interaction of spatially structured light fields with atomic media can generate spatial structures inscribed in the atomic populations and coherences, allowing for example the storage of optical images in atomic vapours. Typically, this involves coherent optical processes based on Raman or EIT transitions. Here we study the simpler situation of shaping atomic populations via spatially dependent optical depletion. Using a near resonant laser beam with a holographically controlled 3D intensity profile, we imprint 3D population structures into a thermal rubidium vapour. This 3D population structure is simultaneously read out by recording the spatially resolved fluorescence of an unshaped probe laser. We find that the reconstructed atomic population structure is largely complementary to the intensity structure of the control beam, however appears blurred due to global repopulation processes. We identify and model these mechanisms which limit the achievable resolution of the 3D atomic population. We expect this work to set design criteria for future 2D and 3D atomic memories

    Orientational effects on the amplitude and phase of polarimeter signals in double resonance atomic magnetometry

    Get PDF
    Double resonance optically pumped magnetometry can be used to measure static magnetic fields with high sensitivity by detecting a resonant atomic spin response to a small oscillating field perturbation. Determination of the resonant frequency yields a scalar measurement of static field (B_0) magnitude. We present calculations and experimental data showing that the on-resonance polarimeter signal of light transmitted through an atomic vapour in arbitrarily oriented B0B_0 may be modelled by considering the evolution of alignment terms in atomic polarisation. We observe that the amplitude and phase of the magnetometer signal are highly dependent upon B_0 orientation, and present precise measurements of the distribution of these parameters over the full 4 pi solid angle
    • …
    corecore